Batch self-organizing maps based on city-block distances for interval variables
نویسندگان
چکیده
The Kohonen Self Organizing Map (SOM) is an unsupervised neural network method with a competitive learning strategy which has both clustering and visualization properties. Interval-valued data arise in practical situations such as recording monthly interval temperatures at meteorological stations, daily interval stock prices, etc. Batch SOM algorithms based on adaptive and non-adaptive city-block distances, suitable for objects described by interval-valued variables, that, for a fixed epoch, optimizes a cost function, are presented. The performance, robustness and usefulness of these SOM algorithms are illustrated with real interval-valued data sets.
منابع مشابه
Green Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملString averages and self-organizing maps for strings
In a recent paper, T. Kohonen and P. Somervuo have shown that self-organizing maps (SOMs) are not restricted to numerical data. They can also be defined for symbol strings, provided that one defines an average function for strings and that the adaptation process is performed off-line (batch). In this paper, we present two different methods for computing averages of strings, as well as an on-lin...
متن کاملSelf-organizing maps of symbol strings
Unsupervised self-organizing maps (SOMs), as well as supervised learning by Learning Vector Quantization (LVQ) can be defined for string variables, too. Their computing becomes possible when the SOM and the LVQ algorithms are expressed as batch versions, and when the average over a list of symbol strings is defined to be the string that has the smallest sum of generalized distance functions fro...
متن کاملSelf-Organizing Maps for Analysis of Expandable Polystyrene Batch Process
Self-organizing maps (SOM) have been successfully applied in many fields of research. In this paper, we demonstrate the use of SOM-based method for the analysis of Expandable PolyStyrene (EPS) batch process. To this end, a data set of EPS-batch process was used for training a SOM. Reference vectors of the SOM were then classified by K-means algorithm into six clusters, which represent product t...
متن کامل